Question Q1.18

If \overrightarrow{C} is the vector sum of \overrightarrow{A} and \overrightarrow{B} , $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$, what must be true about the directions and magnitudes of \overrightarrow{A} and \overrightarrow{B} if C = A + B? What must be true about the directions and magnitudes of \overrightarrow{A} and \overrightarrow{B} if C = 0.

Solution

The vector \mathbf{C} is defined by

 $\mathbf{C}=\mathbf{A}+\mathbf{B}.$

Take the magnitude of both sides.

 $|\mathbf{C}| = |\mathbf{A} + \mathbf{B}|$

Assuming that C = A + B,

$$|\mathbf{C}| = |\mathbf{A} + \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|.$$

According to the triangle inequality, $|\mathbf{A} + \mathbf{B}| \leq |\mathbf{A}| + |\mathbf{B}|$. Equality holds only if the vectors have the same direction and sense. Therefore, what's true is that $|\mathbf{C}| = |\mathbf{A}| + |\mathbf{B}|$ and that \mathbf{A} and \mathbf{B} point in the same direction.

If C = 0, then

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \mathbf{0} \quad \rightarrow \quad \mathbf{B} = -\mathbf{A}.$$

This means **A** and **B** have the same magnitude but are antiparallel (have opposite sense).