Question Q1.18

If $\overrightarrow{\boldsymbol{C}}$ is the vector sum of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}, \overrightarrow{\boldsymbol{C}}=\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$, what must be true about the directions and magnitudes of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ if $C=A+B$? What must be true about the directions and magnitudes of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ if $C=0$.

Solution

The vector \mathbf{C} is defined by

$$
\mathbf{C}=\mathbf{A}+\mathbf{B} .
$$

Take the magnitude of both sides.

$$
|\mathbf{C}|=|\mathbf{A}+\mathbf{B}|
$$

Assuming that $C=A+B$,

$$
|\mathbf{C}|=|\mathbf{A}+\mathbf{B}|=|\mathbf{A}|+|\mathbf{B}| .
$$

According to the triangle inequality, $|\mathbf{A}+\mathbf{B}| \leq|\mathbf{A}|+|\mathbf{B}|$. Equality holds only if the vectors have the same direction and sense. Therefore, what's true is that $|\mathbf{C}|=|\mathbf{A}|+|\mathbf{B}|$ and that \mathbf{A} and \mathbf{B} point in the same direction.

If $C=0$, then

$$
\mathbf{C}=\mathbf{A}+\mathbf{B}=\mathbf{0} \quad \rightarrow \quad \mathbf{B}=-\mathbf{A} .
$$

This means \mathbf{A} and \mathbf{B} have the same magnitude but are antiparallel (have opposite sense).

